

$$
\begin{aligned}
& m_{1}=m_{2}=m_{3}=100 \mathrm{~kg} \quad \text { जि } \\
& k_{1}=k_{2}=1 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

-)

$$
\begin{aligned}
& \left(\begin{array}{ccc}
100 & 0 & 0 \\
0 & 100 & 0 \\
0 & 0 & 10
\end{array}\right)\left\{\begin{array}{l}
\tilde{x}_{1} \\
x_{2} \\
\ddot{x}_{3}
\end{array}\right\}+\left(\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right)\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\} \\
& \operatorname{Det}(\underline{k}-\lambda m)=0 \\
& \Rightarrow\left|\begin{array}{ccc}
1-100 \lambda & -1 & 0 \\
-1 & 2-100 \lambda & -1 \\
0 & -1 & 1-100 \lambda
\end{array}\right|=0 \rightarrow(1-100 \lambda)((2-100 \lambda)(1-100 \lambda)-1)+(1)(100 \lambda-1)=0 \\
& \Rightarrow-1 \times 10^{6} \lambda^{3}+4 \times 10 \lambda^{2}-300 \lambda=1 \Rightarrow-100 \lambda(100 \lambda-1)(100 \lambda-3)=0 \\
& \lambda_{1}=0 \Rightarrow \omega_{1}=0, \lambda_{2}=\frac{1}{100} \Rightarrow \omega_{2}=\frac{1}{10}, \lambda_{3}=\frac{3}{100} \Rightarrow \omega_{3}=\frac{\sqrt{3}}{10}
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
(1-100 \lambda) x_{1}-x_{2}=0 \\
-x_{1}+(2-100 \lambda) x_{2}-x_{3}=0 \\
\quad-x_{2}+(1-100 \lambda) x_{3}=0
\end{array} \quad: \lambda=\lambda_{1}=0 \text {, } 1 \geq 1 \sim 1,1\right. \\
& \lambda_{1}=0 \Rightarrow\left\{\begin{array}{c}
x_{1}-x_{2}=0 \Rightarrow x_{1}=x_{2} \\
-x_{1}+2 x_{2}-x_{3}=0 \\
-x_{2}+x_{3}=0 \Rightarrow x_{2}=x_{3}
\end{array} \Rightarrow x_{1}=\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
x_{1} \\
x_{1} \\
x_{1}
\end{array}\right\} \Rightarrow x_{1}=\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}\right.
\end{aligned}
$$次

$$
i_{x_{2}} \text { in }{ }_{1}
$$

$$
\left\{\begin{array}{l}
\left(1-100\left(\frac{3}{100}\right)\right) x_{1}-x_{2}=0 \\
-x_{1}+\left(1-\operatorname{cod}\left(\frac{3}{100}\right)\right) x_{2}-x_{3}=0 \\
-x_{2}+\left(1-100\left(\frac{3}{100}\right)\right) x_{3}=0
\end{array} \Rightarrow-2 x_{1}-x_{2}=0 \quad \Rightarrow\left\{\begin{array} { l }
{ x _ { 1 } - 2 x _ { 3 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
x_{1}=-x_{2} / 2 \\
x_{3}=-x_{2} / 2
\end{array}\right.\right.\right.
$$

$$
\begin{aligned}
& : 2 \text { : }
\end{aligned}
$$

$$
{\underset{y}{3}}^{(t)}=\left(A_{1} \cos \omega_{1} t+A_{2} \sin \omega_{4} t\right) \underline{x}_{1}+\left(A_{3} \sin \omega_{2} t+A_{4} \sin \omega_{2} t\right) x_{2}+\left(A_{5} \sin \omega_{3} t+A_{6} \sin \omega_{3} t\right) \underline{x}_{3}
$$

$$
\underline{x}(t)=A_{1} x_{1}+\left(A_{3} \operatorname{con} \omega_{2} t+A_{4} \sin \omega_{2} t\right) \underline{x}_{2}+\left(A_{5} \operatorname{cn} \omega_{3} t+A_{6} \operatorname{Sin} \omega_{3} t\right) \underline{x}_{3}
$$

.
位

$$
\sum m_{1} \dot{x}_{i}=m_{1} \dot{x}_{1}+m_{2} \dot{x}_{2}+m_{3} \dot{x}_{3}=A_{2} \quad \vec{y}_{4}
$$

$$
m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}=A_{2} t+A_{1}
$$

$$
\underset{\sim}{x}(t)=\left(A_{1}+A_{2} t\right){\underset{\sim}{x}}_{1}+\left(A_{3} \sin \omega_{2} t+A_{4} \sin \omega_{2} t\right) \underline{x}_{2}+\left(A_{5} \cos \omega_{3} t+A_{6} \sin \omega_{3} t\right) \underline{x}_{3}
$$

$$
\begin{aligned}
& \text { : } \\
& x_{1}(0)=x_{2}(0)=x_{3}(0)=0 \quad, \dot{x}_{1}(0)=1, \dot{x}_{2}(0)=\dot{x}_{3}(0)=0
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
x_{1}(t)=A_{1}+t A_{2}+\cos \left(\frac{t}{10}\right) A_{3}+\sin \left(\frac{t}{10}\right) A_{4}+\cos \left(\frac{\sqrt{3} t}{10}\right) A_{5}+\sin \left(\frac{\sqrt{3} t}{10}\right) A_{6} \\
x_{2}(t)=A_{1}+t A_{2}-2\left(\cos \left(\frac{\sqrt{3} t}{10}\right) A_{5}+\sin \left(\frac{\sqrt{3} t}{10}\right) A_{6}\right) \\
x_{3}(t)=A_{1}+t A_{2}-\cos \left(\frac{t}{10}\right) A_{3}-\sin \left(\frac{t}{10}\right) A_{4}+\cos \left(\frac{\sqrt{3} t}{10}\right) A_{5}+\sin \left(\frac{\sqrt{3} t}{10}\right) A_{6}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \dot{X}_{1}(t)=A_{2}-\frac{1}{10} \sin \left(\frac{t}{10}\right) A_{3}+\frac{1}{10} \cos \left(\frac{t}{10}\right) A_{4}-\frac{1}{10} \sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right) A_{5}+\frac{1}{10} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{10}\right) A_{6} \\
& \dot{x}_{z}(t)=A_{2}-2\left(\frac{1}{10} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{10}\right) A_{6}-\frac{1}{10} \sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right) A_{5}\right) \\
& \dot{x}_{3}(t)=A_{2}+\frac{1}{10} \sin \left(\frac{t}{10}\right) A_{3}-\frac{1}{10} \cos \left(\frac{t}{10}\right) A_{4}-\frac{1}{10} \sqrt{3} \sin \left(\frac{\sqrt{3} t}{10}\right) A_{5}+\frac{1}{10} \sqrt{3} \cos \left(\frac{\sqrt{3} t}{10}\right) A_{6} \\
& \text {, } \\
& \boldsymbol{\lambda}_{1}(\cdot)=0=A_{1}+A_{3}+A_{5} \\
& A_{1} \rightarrow 0 \\
& x_{2}(0)=0=A_{1}-2 A_{5} \\
& \lambda_{3}(0)=0=A_{1}-A_{3}+A_{5} \\
& \dot{x}_{1}(0)=1=A_{2}+\frac{A_{4}}{10}+\frac{\sqrt{3} A_{6}}{10} \quad \Rightarrow \quad A_{2} \rightarrow \frac{1}{3} \\
& \dot{x}_{2}(0)=0=A_{2}-\frac{\sqrt{3} A_{6}}{5} \quad A_{4} \rightarrow 5 \\
& \dot{x}_{3}(0)=0=A_{2}-\frac{A_{4}}{10}+\frac{\sqrt{3} A_{6}}{10} \\
& A_{6} \rightarrow \frac{5}{3 \sqrt{3}}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}(t)=\frac{t}{3}+5 \sin \left(\frac{t}{10}\right)+\frac{5 \sin \left(\frac{\sqrt{3} t}{10}\right)}{3 \sqrt{3}} \\
& x_{2}(t)=\frac{t}{3}-\frac{10 \sin \left(\frac{\sqrt{3} t}{10}\right)}{3 \sqrt{3}} \\
& x_{3}\left(1=\frac{t}{3}-5 \sin \left(\frac{t}{10}\right)+\frac{5 \sin \left(\frac{\sqrt{3} t}{10}\right)}{3 \sqrt{3}}\right.
\end{aligned}
$$

c =imin. -

$$
\begin{aligned}
& r_{1}=125 \mathrm{~mm}, I_{1}=0.08 \quad \mathrm{~m} / \mathrm{m} \\
& r_{2}=250^{\mathrm{mm}}, I_{2}=1.6 \mathrm{gm}^{2}
\end{aligned}, K=500 \mathrm{~m}
$$

$$
\begin{aligned}
& \sum T_{0}=I_{e} \cdot \ddot{\theta}_{i} \\
&\left\{\begin{array}{l}
I_{1} \ddot{\theta}_{1}=-k\left(r_{1} \theta_{1}-r_{2} \theta_{2}\right) r_{1}-k\left(r_{1} \theta_{1}-r_{2} \theta_{2}\right) r_{1} \\
I_{2} \hat{\theta}_{2}=k\left(r_{1} \theta_{1}-r_{2} \theta_{2}\right) r_{2}+k\left(r_{1} \theta_{1}-r_{2} \theta_{2}\right) r_{2}
\end{array}\right. \\
&\left\{\begin{array}{l}
I_{1} \ddot{\theta}_{1}+2 k r_{1}^{2} \theta_{1}-2 k r_{1} r_{2} \theta_{2}=0 \\
I_{2} \tilde{\theta}_{2}-2 k r_{1} r_{2} \theta_{1}+2 k r_{2}^{2} \theta_{2}=\cdot
\end{array}\right. \\
& \Rightarrow\left(\begin{array}{cc}
I_{1} & 0 \\
0 & I_{2}
\end{array}\right)\left\{\begin{array}{l}
\ddot{\theta}_{1} \\
\ddot{\theta}_{2}
\end{array}\right\}+\left(\begin{array}{cc}
2 k r_{1}^{2} & -2 k r_{1} r_{2} \\
-2 k r_{1} r_{2} & 2 k r_{2}^{2}
\end{array}\right)\left\{\begin{array}{l}
\theta_{1} \\
\theta_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right.
\end{aligned}
$$

$$
\operatorname{Det}(\underline{k}-\lambda I)=0 \text { ~~~ }
$$

$$
\left.\begin{array}{rl}
\Rightarrow & \left\{\begin{array}{l}
\left(2 k r_{1}^{2}-\omega^{2} I_{1}\right) \theta_{11}-2 k r_{1} r_{2} \theta_{02}=0 \\
-2 k r_{1} r_{2} \theta_{01}+\left(2 k r_{2}^{2}-\omega^{2} I_{2}\right) \theta_{02}=0
\end{array}\right. \\
\Rightarrow & \left(2 k r_{1}^{2}-I_{1} \omega^{2}\right)\left(2 k r_{2}^{2}-I_{2} \omega^{2}\right)-\left(2 k r_{1} r_{2}\right)^{2}=0
\end{array}\right] \begin{array}{ll}
\Rightarrow I_{1} I_{2}\left(\omega^{2}\right)^{2}-\left(2 k r_{1}^{2} I_{2}+2 k r_{2}^{2} I_{1}\right) \omega^{2}=0
\end{array} \quad \begin{gathered}
\omega^{2}\left[\omega^{2}-2 k\left(\frac{r_{1}^{2}}{I_{1}}+\frac{r_{2}^{2}}{I_{2}}\right)\right]=0 \Rightarrow\left\{\begin{array}{l}
\omega_{n 1}=0 \\
\omega_{n 2}=\sqrt{2 k\left(\frac{r_{1}^{2}}{I_{1}}+\frac{r_{2}^{2}}{I_{2}}\right)}
\end{array}\right.
\end{gathered}
$$

$$
\begin{aligned}
& \left(2 k r_{1}^{2}-0\right) \theta_{01}-2 k \cdot k r_{2} \theta_{02}=0 \Rightarrow \theta_{02}=\frac{r_{1}}{r_{2}} \theta_{01} \\
& \Rightarrow \theta_{01}=\left\{\begin{array}{l}
\theta_{01} \\
\theta_{02}
\end{array}\right\}=\left\{\begin{array}{l}
\theta_{01} \\
\frac{r_{1}}{r_{2}} \\
\theta_{-1}
\end{array}\right\}=\theta_{-1}\left\{\begin{array}{l}
1 \\
r_{1 / r_{2}}
\end{array}\right\} \Rightarrow \theta_{-1}=\left\{\begin{array}{l}
1 \\
r_{1} / r_{2}
\end{array}\right\} \\
& : \omega_{n 2} \text { Cノローデン } \\
& \left(2 k r_{1}^{2}-I_{1}(2 k)\left(\frac{r_{1}^{2}}{I_{1}}+\frac{r_{2}^{2}}{I_{2}}\right)\right) \theta_{\cdot 1}-2 k r_{1} r_{2} \theta_{-2}=0
\end{aligned}
$$

$$
\begin{array}{ll}
\omega_{n_{1}}=0 & , \omega_{n_{2}}=15.31 \mathrm{rad} / \mathrm{s} \\
\underset{-1}{\theta}=\left\{\begin{array}{c}
1 \\
0.5
\end{array}\right\} & ,{\underset{\sim}{02}}^{\theta_{0}}\left\{\begin{array}{c}
1 \\
-0.1
\end{array}\right\}
\end{array}
$$

」

 ．

$$
\begin{aligned}
& \stackrel{t \rightarrow x_{1}}{t\left(x_{1}-x_{2}\right)} \xrightarrow{t m} \quad \sum F_{x_{i}}=m_{1} \ddot{x}_{1} \Rightarrow\left\{\begin{array}{l}
-k\left(x_{1}-x_{2}\right)=2 m \tilde{x}_{1} \\
k\left(x_{1}-x_{2}\right)=m \tilde{x}_{2}
\end{array}\right. \\
& \left\{\begin{array}{l}
2 m \ddot{x}_{1}+k x_{1}-k x_{2}=0 \\
m \tilde{x}_{2}-k x_{1}+k x_{2}=0
\end{array} \quad-\left(\begin{array}{cc}
2 m & 0 \\
0 & m
\end{array}\right)\left\{\begin{array}{l}
\tilde{x}_{1} \\
\tilde{x}_{2}
\end{array}\right\}+\left(\begin{array}{ll}
k & -k \\
-k & k
\end{array}\right)\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left[\begin{array}{l}
0 \\
0
\end{array}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
(k-2 \lambda m) x_{1}-k x_{2}=0 \\
-k x_{1}+(k-\lambda m) x_{2}=0
\end{array} \Rightarrow \operatorname{Det}(\underline{k}-\lambda m)=0 \Rightarrow(k-2 \lambda m)(k-\lambda m)-k^{2}=0\right. \\
& \Rightarrow 2 m^{2} \lambda^{2}-(k m+2 k m) \lambda+k^{2}-k^{2}=0 \rightarrow \lambda\left(2 \lambda-\frac{3 k}{m}\right)=0 \\
& \Rightarrow \lambda=\lambda_{1}=0 \Rightarrow \omega_{1}=0, \lambda=\lambda_{2}=\frac{3 k}{2 m} \Rightarrow \omega_{2}=\sqrt{\frac{3 k}{2 m}}
\end{aligned}
$$

$$
\begin{aligned}
& (k-2 m(0)) x_{1}-k x_{2}=0 \Rightarrow x_{1}=x_{2} \Rightarrow \underset{x_{1}}{x_{1}}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\} \\
& \left(k-2 m\left(\frac{3 k}{2 m}\right)\right) x_{1}-k x_{2}=0 \Rightarrow x_{2}=-2 x_{1} \Rightarrow x_{2}=\left\{\begin{array}{c}
1 \\
-2
\end{array}\right\} \\
& \lambda=\lambda_{2} \text { ハリバン }
\end{aligned}
$$

$$
\underline{x}(t)=\left(A_{1}+A_{2} t\right) \underline{x}_{1}+\left(A_{3} \cos \omega_{2} t+A_{Y} \sin \omega_{2} t\right) \underline{x}_{2}
$$

$$
\begin{aligned}
& x_{1}(0)=x_{2}(0)=0 \\
& \dot{x}_{1}(0)=v, \dot{x}_{2}(0)=0 \\
& x_{1}(t)=A_{1}+A_{2} t+A_{3} \cos \omega_{2} t+A_{4} \sin \omega_{2} t \\
& x_{2}(t)=A_{1}+A_{2} t-2 A_{3} \cos \omega_{2} t-2 A_{4} \sin \omega_{2} t \\
& \dot{x}_{1}(t)=A_{2}-\omega_{2} A_{3} \sin \omega_{2} t+\omega_{2} A_{4} \cos \omega_{2} t \\
& \dot{x}_{2}(t)=A_{2}+2 \omega_{2} A_{3} \sin \omega_{2} t-2 \omega_{2} A_{4} \cos \omega_{2} t
\end{aligned}
$$

:ز)

$$
\begin{aligned}
& x_{1}(0)=A_{1}+A_{3}=0 \quad \Rightarrow \quad \begin{array}{l}
A_{1}=0 \\
A_{3}=0
\end{array} \\
& x_{2}(0)=A_{1}-2 A_{3}=0
\end{aligned}
$$

$$
\begin{array}{ll}
\dot{x}_{1}(0)=A_{2}+w_{2} A_{4}=V \\
\dot{x}_{2}(0)=A_{2}-2 w_{2} A_{4}=0 \\
x_{1}(t)=\frac{2}{3} v t+\frac{1}{3} \frac{V}{\omega_{2}} \sin \omega_{2} t & : A_{2}=\frac{2}{3} V \\
x_{2}(t)=\frac{2}{3} v t-\frac{2}{3} \frac{V}{\omega_{2}} \sin \omega_{2} t &
\end{array}
$$

