 ли л齐
 $\xrightarrow[x_{1}]{\lambda_{1}} \sim_{x_{1}}^{k_{1}}$

$$
\begin{aligned}
& \sum F_{x_{1}}=m_{1} \tilde{x}_{i} \quad i=1,2 \\
& \quad-k_{1} x_{1}-k_{2}\left(x_{1}-x_{2}\right)=m_{1} \tilde{x}_{1} \\
& +k_{2}\left(x_{1}-x_{2}\right)-k_{3} x_{2}=m_{2} \tilde{x}_{2} \Rightarrow\left\{\begin{array}{l}
m_{1} \tilde{x}_{1}+\left(k_{1}+k_{2}\right) x_{1}-k_{2} x_{2}=0 \\
m_{2} \ddot{x}_{2}-k_{2} x_{1}+\left(k_{2}+k_{3}\right) x_{2}=0
\end{array}\right.
\end{aligned}
$$

秋

$$
\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\left\{\begin{array}{c}
\tilde{x}_{1} \\
\ddot{x}_{2}
\end{array}\right\}+\left(\begin{array}{ccc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right)\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

$$
\underline{m} \underline{x}+\underline{k} \underline{x}=0
$$

$$
\begin{aligned}
& x_{1}=x_{1} e^{j \omega t} \Rightarrow \underline{x}=\left\{\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right\}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\} e^{j \omega t}=\underline{x} e^{j \omega t} \\
& x_{2}=x_{2} e^{j \omega t}
\end{aligned}
$$

$$
\begin{aligned}
& -\omega^{2}\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\} e^{j \omega^{f}+\left(\begin{array}{cc}
k_{1}+k_{2} & -k_{2} \\
-k_{2} & k_{2}+k_{3}
\end{array}\right)\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\} 民 \in\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}} \\
& \left\{\begin{array}{l}
\left.\left(k_{1}+k_{2}\right)-m_{1} \omega^{2}\right] x_{1}-k_{2} x_{2}=0 \\
-k_{1} x_{1}+\left[\left(k_{2}+k_{3}\right)-m_{2} \omega^{2}\right] x_{2}=0
\end{array}\right.
\end{aligned}
$$

$$
-\omega^{2} \underline{m} \underline{x}+\underline{k} \underline{x}=0 \Rightarrow\left(\underline{k}-\omega^{2} \underline{m}\right) \underline{x}=0 \Rightarrow(\underline{k}-\lambda \underline{m}) \underline{x}=0
$$

$$
=\omega 1 \lambda=\omega^{2}
$$

:

$$
x_{1}=\frac{\left|\begin{array}{cc}
0 & -k_{2} \\
0 & \left(k_{2}+k_{3}\right)-m_{2} \omega^{2}
\end{array}\right|}{\left|\begin{array}{ll}
\left(k_{1}+k_{2}\right)-m_{1} \omega^{2}-k_{2} \\
-k_{2} & \left(k_{2}+k_{3}\right)-m_{2} \omega^{2}
\end{array}\right|}=0, x_{2}=\frac{\left|\begin{array}{cc}
\left(k_{1}+k_{2}\right)-m_{1} \omega^{2} & 0 \\
-k_{2} & 2
\end{array}\right|}{\left|\begin{array}{cc}
\left(k_{1}+k_{2}\right)-m_{1} \omega^{2} & -k_{2} \\
-k_{2} & \left(k_{2}+k_{3}\right)-m_{2} \omega^{2}
\end{array}\right|}=0
$$

？
 ，קور ，

$$
\begin{aligned}
& \left|\begin{array}{cc}
\left(k_{1}+k_{2}\right)-m_{1} \omega^{2} & -k_{2} \\
-k_{2} & \left(k_{2}+k_{3}\right)-m_{2} \omega^{2}
\end{array}\right|=0 \underline{k}\left|\begin{array}{ccc}
\left(k_{1}+k_{2}\right)-m_{1} \lambda & -k_{2} \\
-k_{2} & \left(k_{2}+k_{3}\right)-m_{2} \lambda
\end{array}\right|=0 \\
& m_{1} m_{2} \lambda^{2}-\left(k_{2} m_{1}+k_{3} m_{1}+k_{1} m_{2}+k_{2} m_{2}\right) \lambda+k_{1} k_{2}+k_{1} k_{3}+k_{2} k_{3}=0
\end{aligned}
$$

 ＇～～～ $2 n$ Pッj）

 $, k_{3}=3^{N / m}, k_{2}=2^{N / m}, k_{1}=38^{N / m}, m_{2} 1^{k y}, m_{1}=9^{\mathrm{kg}} \quad$ 而： C こん

$$
\underline{m}=\left(\begin{array}{ll}
9 & 0 \\
0 & 1
\end{array}\right), \underline{k}=\left(\begin{array}{cc}
40 & -2 \\
-2 & 5
\end{array}\right)
$$

$$
(\underline{k}-\lambda \underline{m}) \underline{x}=0 \Rightarrow\left\{\begin{array}{l}
(40-9 \lambda) x_{1}-2 x_{2}=0 \\
-2 x_{1}+(5-\lambda) x_{2}=0
\end{array} \Rightarrow\left(\begin{array}{cc}
40-9 \lambda & -2 \\
-2 & 5-\lambda
\end{array}\right) \underline{x}=0\right.
$$

$\operatorname{Det}(\underline{\underline{K}}-\lambda \underline{\underline{m}})=0 \Rightarrow(40-9 \lambda)(5-\lambda)-(-2)(-2)=0$

$$
\begin{aligned}
& \quad 9 \lambda^{2}-85 \lambda+196=0 \Rightarrow(\lambda-4)(9 \lambda-49)=0 \\
& \lambda=\lambda_{1}=4 \Rightarrow \omega_{1}= \pm 2^{\mathrm{rad} / \mathrm{s}}
\end{aligned}
$$

$$
\lambda=\lambda_{2}=\frac{49}{9} \Rightarrow w_{2}= \pm \frac{7}{3}
$$

－حر－

$$
\lambda=\lambda_{1}=4
$$

！！¢ 「＂»

$$
\left\{\begin{array} { l }
{ (4 0 - 9 (4)) x _ { 1 } - 2 x _ { 2 } = 0 } \\
{ - 2 x _ { 1 } + (5 - 4) x _ { 2 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
4 x_{1}-2 x_{2}=0 \\
-2 x_{1}+x_{2}=0
\end{array}\right.\right.
$$

䏚少．．N
－iهـ
 حمصْ

$$
x_{2}=2 x_{1}
$$

ل－
：

$$
\underline{x}_{1}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
x_{1} \\
2 x_{1}
\end{array}\right\}=x_{1}\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}, x_{1}=1 \Rightarrow x_{1}=\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}
$$

,) () (

$$
\begin{aligned}
& w= \pm w_{2} \backsim \lambda=\lambda_{2}=49 / 9 \\
& \left\{\begin{array} { l }
{ (4 0 - 9 (\frac { 4 9 } { 9 })) x _ { 1 } - 2 x _ { 2 } = 0 } \\
{ - 2 x _ { 1 } + (5 - \frac { 4 9 } { 9 }) x _ { 2 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
-9 x_{1}-2 x_{2}=0 \\
-2 x_{1}-\frac{4}{9} x_{2}=0
\end{array}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=-\frac{9}{2} x_{1} \\
& \underline{x}_{2}=\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{c}
x_{1} \\
-\frac{9}{2} x_{1}
\end{array}\right\}=x_{1}\left\{\begin{array}{c}
1 \\
-\frac{9}{2}
\end{array}\right\}, x_{1}=1 \Rightarrow x_{2}=\left\{\begin{array}{c}
1 \\
-\frac{9}{2}
\end{array}\right\}
\end{aligned}
$$

寝

$$
\underline{x}(t)=a \underline{x}_{1} e^{j \omega_{1} t}+b \underline{x}_{1} e^{-j \omega_{1} t}+c \underline{x}_{2} e^{j \omega_{2} t}+d \underline{x}_{2} e^{-j \omega_{2} t}
$$

$$
\begin{aligned}
& \underline{x}(t)=\left\{\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right\}=\left(A_{1} \operatorname{con}^{\omega} \omega_{1} t+A_{2} \sin \omega_{1} t\right) x_{1}+\left(A_{3} \cos \omega_{2} t+A_{4} \sin \omega_{2} t\right) \underline{x}_{2}
\end{aligned}
$$

毛

$$
\underline{x}(0)=\left\{\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right\} \quad, \dot{x}(0)=\left\{\begin{array}{l}
\dot{x}_{1}(0) \\
\dot{x}_{2}(0)
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

：（ッァノ

$$
\begin{array}{ll}
\omega_{1}=2 \mathrm{rad} / \mathrm{s} & x_{1}=\left\{\begin{array}{l}
1 \\
2
\end{array}\right\} \quad, x_{2}=\left\{\begin{array}{c}
1 \\
-9 / 2
\end{array}\right\}
\end{array}
$$

$$
\begin{aligned}
& \underline{x}(t)=\left\{\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right\}=\left(A_{1} \operatorname{en} 2 t+A_{2} \sin 2 t\left\{\left\{\begin{array}{l}
1 \\
2
\end{array}\right\}+\left(A_{3} \operatorname{cn}_{n} \frac{7}{3}+A_{4} \sin \frac{7}{3} t\right)\left\{\begin{array}{c}
1 \\
-\frac{9}{2}
\end{array}\right\}\right.\right. \\
& x_{1}(t)=A_{1} \operatorname{cn} 2 t+A_{2} \sin 2 t+A_{3} \cos \frac{7}{5} t+A_{4} \sin \frac{7}{3} t \\
& x_{2}(t)=2 A_{1} \operatorname{cn} 2 t+2 A_{2} \sin 2 t-\frac{9}{2} A_{3} \ln \frac{7}{3} t-\frac{9}{2} A_{4} \sin \frac{7}{3} t
\end{aligned}
$$

$$
\begin{aligned}
& \dot{x}_{1}(t)=-2 A_{1} \sin 2 t+2 A_{2} C_{n} 2 t-\frac{7}{3} A_{3} \sin \frac{7}{3} t+\frac{7}{3} A_{4} c_{n} \frac{7}{3} t \\
& \dot{x}_{2}(t)=(2)\left(-2 A_{1} \sin 2 t\right)+(2)\left(2 A_{2} \ln 2 t\right)+\left(-\frac{9}{2}\right)\left(-\frac{7}{3} A_{3} \sin \frac{7}{3} t\right)+\left(-\frac{9}{2}\right)\left(\frac{7}{3} A_{4} \operatorname{c}_{3} 7_{2}\right) \\
& t=0 \\
& x_{1}(0)=A_{1}+A_{3}=1 \\
& x_{2}(0)=2 A_{1}-\frac{9}{2} A_{3}=0 \\
& \dot{x}_{1}(0)=2 A_{2}+\frac{7}{3} A_{y}=0 \\
& \dot{x}_{2}(0)=4 A_{2}-\frac{21}{2} A_{4}=0
\end{aligned}
$$

. थ, - -

$$
\begin{aligned}
& A_{1}=\frac{9}{13}, A_{2}=\frac{4}{13} \\
& :(1,1 / \omega \\
& A_{2}=0, A_{4}=0 \\
& x_{1}(t)=\frac{9}{13} \sin 2 t+\frac{4}{13} \cos \frac{7}{3} t \quad, x_{2}(t)=\frac{18}{13} \cos 2 t-\frac{18}{13} \cos \frac{7}{3} t: \int 1 N p \dot{\sim}, y_{0}
\end{aligned}
$$

-r8

$$
x_{2}(0)=2 \quad \dot{x}_{2}(0)=0
$$

$$
\begin{aligned}
& x_{1}(0)=A_{1}+A_{3}=1 \\
& x_{2}(0)=2 A_{1}-\frac{9}{2} A_{3}=2
\end{aligned} \quad \rightarrow A_{1}=1, x_{3}=\cdot
$$

$$
x_{1}(t)=\operatorname{con} 2 r \quad \because, 1=N_{1}=, \omega \text { iver jucisci }
$$

它泣

؟
 - رُّ

