σ_{0}

(1) $m \ddot{x}+c \dot{x}+k x=F$
$: ; ノ=\sim 1$
$x=x_{0} \operatorname{Sin}(\omega t \alpha)$
$\sim_{-}[\pi, F=F \sin \omega t]_{0}^{\prime}$

\therefore au

Re

$$
\begin{gathered}
\dot{i}=j \omega x_{0} e^{j(\omega t-\alpha)}=\omega x_{0} e^{j(\omega t-\alpha+k / L)} \quad j=\operatorname{con} \pi / 2+i \sin \frac{\pi}{L}=e^{j \sin / 2} \\
\ddot{x}=(j \omega)^{2} x_{0} \cdot e^{j(\omega t-\alpha)}=-\omega^{2} x_{0} e^{j(\omega t-\alpha)}=\omega^{2} x_{0} e^{j(\omega t-\alpha+n)}
\end{gathered}
$$

$$
R_{e}
$$

.

$$
\begin{aligned}
& -k x=-k x_{0}^{j(\omega \mid-\alpha)}=k x e^{j(\alpha t-\alpha+n)} \\
& \left.j\left(\alpha+-\alpha+\frac{n}{2}\right) \quad \text { jest }-\alpha+\frac{x}{2}\right) \\
& -c \dot{x}=-c \omega x . e={ }^{2} \operatorname{cosk} e \\
& -m \ddot{x}=-m \omega^{2} x \cdot e^{j(\omega+\alpha+n)}=m \omega^{2} x \cdot e^{j(a t-\alpha)}
\end{aligned}
$$

 .

$$
\begin{aligned}
& F_{t}=k x+c \dot{x} \\
& x=x \cdot \sin (\omega t-\alpha)
\end{aligned}
$$

$$
F_{t}=k x . \operatorname{Sin}(\omega t-\alpha)+\cos x . \operatorname{cn}(\omega t-\alpha)
$$

$$
\left.=\sqrt{k^{2}+\left((\omega)^{2}\right.} x \cdot\left[\frac{k}{\sqrt{k^{2}+k(\omega)^{2}}} \sin (\omega t-\alpha)+\frac{c \alpha}{\sqrt{k^{2}+1(c)}} \sin \right)^{2} \cdot n(N f-\alpha)\right]
$$

$$
: \dot{N} \dot{n}_{i}
$$

$$
\begin{aligned}
F_{t} & =\sqrt{k^{2}+\left((\omega)^{2}\right.} x \cdot \sin (\omega t-\alpha+\beta) \quad \frac{\sqrt{k^{2}+(\omega)^{2}}}{\beta}<\omega \\
& =\sqrt{k^{2}+\left((\omega)^{2}\right.} \frac{F_{0}}{\sqrt{\left(k-h \omega^{2}\right)^{2}+(\omega)^{2}}} \sin (\omega t-\alpha+\beta) \\
F_{t} & =F_{t_{0}} \sin (\omega t-\alpha+\beta) \quad, F_{c_{0}}=\left[\frac{k^{2}+(c \omega)^{2}}{\left(k-m^{2}\right)^{2}+(\omega)^{2}}\right]^{1 / 2}
\end{aligned}
$$

$$
\begin{gathered}
F_{t}=k x+c \dot{x}=k x+C D x=(k+C D) x \quad D=d / d-1 \\
\vdots!!!x / r e p
\end{gathered}
$$

$$
x=\frac{1}{m D^{2}+c D+12}\left(I_{m} F_{\cdot} e^{j \omega 1}\right)
$$

$$
F_{t}=(k+C D) \frac{1}{k+C D}\left(\operatorname{Im} D^{2}+C D+k \quad F_{0} e^{\text {jat }}\right)
$$

$$
=\frac{k+C D}{m D^{2}+C D+k}\left(\operatorname{Im} F_{1} e^{j u t}\right)=\operatorname{Im} \frac{k+c(j \omega)}{m(j u)^{2}+c(j(u)+k} F_{1} e^{j u t}
$$

$$
=\operatorname{Im} \frac{k+j<\omega}{\left(k-m \omega^{2}\right)+j<a} F_{0} e^{j a t}
$$

$$
=\operatorname{Im} \frac{\sqrt{k^{2}+(c \omega)^{2}} e^{j \beta} \bar{r}_{1} e^{j \omega t}}{\sqrt{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}} e^{j \alpha}}
$$

$$
=\left[\frac{k^{2}+(c w)^{2}}{\left(k-m \omega^{2}\right)^{2}+\left((\omega)^{2}\right.}\right]^{1 / 2} F_{0} I_{m} e^{j(\omega t-\alpha+\beta)}
$$

$$
F_{t}=F_{t} \sin (\omega t-\alpha+\beta) \quad, F_{t}=\left[\frac{k^{2}+(c \omega)^{2}}{\left(k-m \omega^{2}\right)^{2}+(c \omega)^{2}}\right]_{1}^{1 / 2}
$$

ル

$$
\begin{gathered}
\frac{F_{E_{0}}}{F_{0}}=\left[\frac{1+\left(\frac{c w}{k}\right)^{2}}{\left(1-\frac{m \omega^{2}}{k}\right)^{2}+\left(\frac{(w}{k}\right)^{2}}\right]^{1 / 2}\left[=\frac{1+\left(2 \xi \frac{w}{w_{n}}\right)^{2}}{\left(1-\left(\frac{\omega}{\omega_{n}^{2}}\right)^{2}+\left(2 \xi \omega / \omega_{n}\right)^{2}\right.}\right]^{1 / 2} \quad \therefore r=\frac{\omega}{4} \\
\frac{F_{t}}{F_{0}}=\left[\frac{1+(2 \xi r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}}\right]^{1 / 2}
\end{gathered}
$$

ir $=\sqrt{2} \quad$ \＆

$$
\begin{aligned}
& \frac{F_{i}}{F_{0}}=1 \quad \xi-\infty \\
& \frac{F_{i}}{F_{i}}=\frac{-1}{1-r^{2}} \quad \xi=0 \\
& \frac{-1}{1-r^{2}}=1 \Rightarrow r=\sqrt{2}
\end{aligned}
$$

：آٌ

$$
\frac{F_{t_{0}}}{F_{0}}=\left(\frac{1+(2 \xi r)^{2}}{\left.\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}\right)^{1 / 2}}=\left(\frac{1+(2 \xi \sqrt{2})^{2}}{(1-2)^{2}+(2 \xi \sqrt{2})^{2}}\right)^{1 / 2}=1\right.
$$

．二小欠

Equivalent Springs $S \Omega r$ تَّك ,

$$
: \Gamma \text { F.B.D त, :" }
$$

$$
\begin{aligned}
& \sum F_{x}=m \ddot{x} \\
& -k_{1} x-k_{2} x-k_{3} x=m \ddot{x} \\
& m \ddot{x}+\left(k_{1}+k_{2}+k_{3}\right) x=0
\end{aligned}
$$

$$
m \ddot{x}+k_{c} \boldsymbol{x}=0
$$

$$
k_{e q}=\sum_{i=1} k_{i}
$$

$$
R^{k_{2}(x, y)}
$$

$m \mid \sum F_{x}=m \ddot{x} \rightarrow-K_{2}(x-y)=m \bar{x}$ (1)

$$
\int_{k_{2}(x \cdot y)}^{k_{1} y} \quad k_{2}(x \cdot y)-k_{1} y=\operatorname{m}_{2} x=\left(k_{1}+k_{2}\right) y \quad \Rightarrow y=\frac{k_{2}}{k_{1}+k_{2}} y
$$

(1), (1);

$$
\begin{aligned}
& -k_{2}\left(x-\frac{k_{2}}{k_{1}+k_{2}} x\right)=m \ddot{x} \\
& m \ddot{x}+k_{2}\left(\frac{k_{1}+k_{2}-k_{2}}{k_{1}+k_{2}}\right) x=0 \Rightarrow m \ddot{x}+\frac{k_{1} k_{2}}{k_{1}+k_{2}} x=0
\end{aligned}
$$

$$
\begin{aligned}
& n=16,1, \\
& \frac{1}{k_{e g}}=\sum_{i=1}^{n} \frac{1}{k_{i}}
\end{aligned}
$$

تز

$$
\sum F_{y} \quad-\quad-N_{1}+N_{2}-m g-k 2 \operatorname{cin} \alpha \sin \alpha=0
$$

$$
\begin{aligned}
& c_{c q}=\sum_{i=1}^{n} c_{i} \\
& \frac{1}{c_{e q}}=\sum_{i=1}^{n} \frac{1}{e_{i}} \\
& c_{e q}=\sum_{i=1}^{n} c_{i} c^{2} \alpha_{i}
\end{aligned}
$$

: U准
:cr ofin : Rónés

$$
\begin{aligned}
& k_{e y}=\sum_{i=1}^{n} k_{i} \operatorname{con}^{2} \alpha_{i} \\
& \text { i=1 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { : F.B.D }
\end{aligned}
$$

多 طْ角

$$
\delta=\frac{1}{n} \ln \frac{x_{1}}{x_{n+1}}=\frac{1}{1} \ln \frac{x_{1}}{x_{2}}=\ln \frac{4}{2.13}=0.63017
$$

$$
\begin{aligned}
& \delta=\frac{2 n \xi}{\sqrt{1-5^{2}}} \Rightarrow \xi=\frac{8}{\sqrt{4 n^{2}+8^{2}}} \\
& r=\frac{\omega}{a_{n}}=\frac{31.4}{17.755}=1.874
\end{aligned}
$$

$$
\begin{aligned}
& x_{0}=\frac{F_{0} / k}{\sqrt{\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}}}=0.11 \mathrm{~mm} \\
& F_{t_{-}}=\left[\frac{1+(2 \xi r)^{2}}{\left(1-r^{2}\right)^{2}+(2 \xi r)^{2}}\right]^{1 / 2} F_{0}=42.04^{\mathrm{N}} \\
& \alpha=\tan ^{-1} \frac{2 \xi r}{1-r^{2}}=8.47^{\circ} \Rightarrow \alpha=171.53^{\circ}
\end{aligned}
$$

$$
\beta=\tan ^{-1} 2 \xi r=6.08
$$

