(1)

$$
\sum_{i}\left(\underline{F}_{i}-m \frac{d^{2}}{d+t^{2}} r_{i}\right) \delta r_{i}=0
$$

$$
: \text { - }
$$

:
(2)

$$
\underline{r}_{i}=r_{i}\left(q_{1}, q_{2}, \cdots, q_{n}, t\right)
$$

(3)

$$
\delta \underline{r}_{i}=\sum_{j} \frac{\partial \underline{r}_{i}}{\partial q_{j}} \delta q_{,}
$$

(4)

$$
d r_{i}=\sum_{j} \frac{\partial r_{i}}{\partial q_{i}} \cdot \delta q_{j}+\frac{\partial r_{i}}{\partial t}
$$

(6) $\quad Q_{j}=\sum_{i} F_{i} \cdot \frac{\partial r_{i}}{\partial F_{j}}$

: ح
(7) $\quad \sum_{i} m_{i} \frac{d^{2} r_{i}}{d t^{2}} \delta r_{i}=\sum_{i} m_{i} \frac{d^{2} r_{i}}{d r^{2}} \sum_{j} \frac{\partial r_{i}}{\partial q_{j}} \delta q_{j}$

$$
=\sum_{j}\left(\sum_{i} m_{i} \frac{\partial^{2} r_{i}}{\partial t^{2}} \frac{\partial r_{i}}{\partial q_{j}}\right) \delta q_{j}
$$

$$
\begin{aligned}
& \sum_{i} F_{i} \delta r_{i}=\sum_{i} F_{i} \sum_{j} \frac{\partial g_{i}}{\partial g_{i}} \delta q_{j} \\
& =\sum_{j}\left(\sum_{i} F \therefore \frac{\partial r_{i}}{\partial q_{j}}\right) \delta g_{j}=\sum_{j} Q_{j} \delta g_{j} \quad \text { rs } \\
& \text { : }
\end{aligned}
$$

$: \mathrm{c}^{2}<1$,

$$
\underline{V}_{i}=\frac{\partial}{d t} \underline{r}_{i}=\sum_{k} \frac{\partial r_{i}}{\partial r_{k}} \dot{q}_{k}+\frac{\partial \dot{r}_{i}}{\partial t}
$$

$$
\begin{aligned}
& \frac{\partial r_{i}}{\partial \dot{q}_{j}}=\frac{\partial \underline{r}_{i}}{\partial r_{i}} \\
& m_{i} \cdot \frac{\partial^{2}}{\partial t} \underline{r}_{i} \cdot \delta \underline{r}_{i}=\sum_{i} \\
& T=\sum_{i} \frac{1}{2} m_{i} \underline{v}_{i} \underline{v}_{i}
\end{aligned}
$$

$$
\sum_{i} m_{i} \cdot \frac{\partial^{2}}{\partial t} \underline{r}_{i} \cdot \delta \underline{r}_{i}=\sum_{i}\left\{\frac{d}{\partial t}\left(m_{i} \underline{v}_{i} \cdot \frac{\partial \underline{v}_{i}}{\partial q_{j}}\right)-m_{i} \cdot \underline{v}_{i} \frac{\partial v_{i}}{\partial q_{j}}\right\}(\delta)
$$:

$$
\begin{aligned}
& \sum_{j}\left[Q_{j}-\left\{\frac{d}{d+}\left(\frac{\partial T}{\partial q_{j}}\right)-\frac{\partial T}{\partial j_{j}}\right\}\right] 8 q_{j}=0 \quad \text { (} 9 \text { : }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial q_{j}}\right)-\frac{\partial T}{\partial q_{j}}=Q_{j} \quad j=1, n
\end{aligned}
$$

$$
\begin{aligned}
& \text { : } \\
& \sum_{i} \frac{d}{d t}\left(m_{i} \frac{\partial}{d t} r_{i} \frac{\partial r_{i}}{\partial q_{i}}\right)=\sum_{i}\left(m_{i} \frac{d^{2} r_{i}}{\partial 1^{2}} \frac{\partial r_{i}}{\partial q_{j}}\right)+\sum_{i}\left(m_{i} \frac{d r_{i}}{d 1} \frac{d}{d z}\left(\frac{\partial r_{i}}{\partial q_{j}}\right)\right)^{d q_{j}} \\
& \text { : -rı, モr oíno } \\
& \frac{d}{d r}\left(\frac{\partial r_{i}}{\partial q_{j}}\right)=\sum_{k} \frac{\partial^{2} \underline{r}_{i}}{\partial q_{j} q_{r_{k}}}+\frac{\partial^{2} r_{i}}{\partial q_{j} \partial t}=\sum_{k} \frac{\partial}{\partial q_{k}}\left(\frac{\partial r_{i}}{\partial r_{j}}\right) \frac{\partial q_{k}}{\partial t}+\frac{\partial}{\partial f}\left(\frac{\partial r_{i}}{\partial q_{j}}\right. \\
& =\frac{\partial}{\partial q_{j}}\left\{\sum_{k} \frac{\partial r_{i}}{\partial q_{k}} \dot{q}_{k}+\frac{\partial r_{i}}{\partial t}\right\}_{i r_{i}}=\frac{\partial \dot{i}_{i}}{\partial q_{j}}=\frac{\partial r_{i}}{\partial F_{j}}
\end{aligned}
$$

Potential free forces $\dot{\operatorname{Lin}}=\dot{\operatorname{Lin}}$自
نِرْ ر
 $V=V\left(q_{1}, q_{2}, \ldots, q_{n}\right) \quad$ potential Energy y

$$
\delta V=-Q_{i} \delta q_{i}=\frac{\partial V}{r q_{i}} \delta q_{i} \Rightarrow Q_{i}=-\frac{\partial V}{\partial q_{i}}
$$

:

$$
\frac{d}{d r}\left(\frac{\partial T}{\partial \dot{\phi}_{i}}\right)-\frac{\partial T}{\partial q_{i}}=Q_{i}+\left(-\frac{\partial V^{\prime}}{\partial q_{i}}\right)
$$

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i} \quad i=1, h
$$

dit

$$
L=T \cdot V
$$

$$
\frac{\partial}{d t}\left(\frac{\partial L}{\partial q_{i}}\right)-\frac{\partial L}{\partial q_{i}}=Q_{i} \quad: \quad i=1, n
$$

，」
 Fix（t）
 קینیر，

$$
\begin{aligned}
& \underline{v}_{A}=\underline{v}_{A_{B}}+\underline{v}_{B}=\dot{r} e_{r}+r \dot{\theta} e_{\theta}-\dot{x} \dot{j} \\
& r=A B=l-\lambda \Rightarrow V_{r}=\dot{r}=-\dot{x}, V_{\theta}=r \dot{\theta}=(l-x) \dot{\theta}: \breve{b}_{1} \\
& v_{A}=-\dot{x} e_{r}+(l-x) \dot{\theta} e_{\theta}+\dot{x}\left(\cos \theta e_{r}-\sin \theta e_{\theta}\right): \dot{c}^{\prime} \dot{c}_{\dot{\prime}} \\
& =-\dot{x}(1-\operatorname{cn} \theta) e_{r}+[(e-x) \dot{\theta}-\dot{x} \sin \theta] e_{\theta} \\
& T=\frac{1}{2} m v_{A}^{2}=\frac{1}{2} m V_{A} \cdot v_{A} \\
& \text { : ~~~ジッ } \\
& =\frac{1}{2} m\left[\dot{x}^{2}(1-\operatorname{cs} \theta)^{2}+\left(l-x^{2}\right) \dot{\theta}^{2}-2(l-x) \dot{\partial} \dot{x} \sin \theta+\dot{x}^{2} \sin \theta\right] \\
& =\frac{1}{2} m\left[2 \dot{x}^{2}(1-\cos \theta)+(l-x)^{2} \dot{\theta}^{2}-2(l-x) \dot{x} \dot{\theta} \operatorname{Sin} \theta\right]
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d r}\left(\frac{\partial T}{\partial \dot{\theta}}\right)-\frac{\partial T}{\partial \theta}+\frac{\partial v}{\partial \theta}=0 \\
& \frac{\partial T}{\partial \dot{r}}= m\left[(l-x)^{2} \dot{\theta}-(l-x) \dot{x} \sin \theta\right] \\
& \frac{d}{d r}\left(\frac{\partial T}{\partial \dot{\theta}}\right)= m\left[2(l-x)(-\dot{x}) \dot{\theta}+(l-x)^{2} \ddot{\theta}+\dot{x}^{2} \sin \theta\right. \\
&-(l-x) \ddot{x} \sin \theta-(l-x) \dot{x} \dot{\theta} \operatorname{con} \theta] \\
& \frac{\partial T}{\partial \theta}= m\left[\dot{x}^{2} \sin \theta-(l-x) \dot{x} \dot{\theta} \cos \theta\right] \\
& \frac{\partial V}{\partial \theta}= m g(l-x) \sin \theta
\end{aligned}
$$

:

$$
\begin{aligned}
(l-x)[(l-x) \ddot{y}-2 \dot{x} \dot{\theta}+(g-\bar{x}) \sin \theta] & =0 \\
& :=1 \text {, Pij } l-x \neq 0 \\
(l-x) \dot{y}-2 \dot{x} \dot{\theta}+(g-\ddot{x}) \sin \theta & =\text {. }
\end{aligned}
$$

Problem Statement: A uniform rigid bar of total mass m and length L_{2}, suspended at point O by a string of length L_{1}, is acted upon by a horizontal force F, as shown in Figure 1.

Use the Lagrange equation to derive the equations of motion for the system.

\qquad

 - in op
(1) (2)
(b) : 㭠

$$
\begin{aligned}
d_{1}+d_{2} & =L_{1}\left(1-\cos \theta_{1}\right)+\frac{L_{2}}{2}\left(1-c_{n} \partial_{2}\right) \\
V=m g\left(d_{1}+d_{2}\right) & =m g\left[L_{1}\left(1-\cos \theta_{1}\right)+\frac{L_{2}}{2}\left(1-\cos \theta_{2}\right)\right] \quad: r \text { ? }
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{x}_{C}=\left(L_{1} \sin \theta_{1}+\frac{L_{2}}{2} \sin \theta_{2}\right) \hat{\mathbf{i}}+\left(L_{1} \cos \theta_{1}+\frac{L_{2}}{2} \cos \theta_{2}\right) \hat{\mathbf{j}} \\
\mathbf{v}_{C}=\dot{\mathbf{x}}_{C}=\left(L_{1} \cos \theta_{1} \dot{\theta}_{1}+\frac{L_{2}}{2} \cos \theta_{2} \dot{\theta}_{2}\right) \hat{\mathbf{i}}-\left(L_{1} \sin \theta_{1} \dot{\theta}_{1}+\frac{L_{2}}{2} \sin \theta_{2} \dot{\theta}_{2}\right) \hat{\mathbf{j}}
\end{gathered}
$$

$$
V_{c}^{2}=\underline{v}_{c} \cdot v_{c}=L_{1}^{2} \dot{\partial}_{1}^{2}+\frac{L_{2}^{2}}{2} \dot{\partial}_{2}^{2}+L_{1} L_{2} \dot{\partial}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)
$$

$$
T=\frac{1}{2} m v_{C}^{2}+\frac{1}{2} I \dot{\theta}_{2}^{2}=\frac{1}{2} m L_{1}^{2} \dot{\theta}_{1}^{2}+\frac{1}{6} m L_{2}^{2} \dot{\theta}_{2}^{2}+\frac{1}{2} m L_{1} L_{2} \dot{\theta}_{1} \dot{\theta}_{2} \cos \left(\theta_{1}-\theta_{2}\right)
$$

נ洜解

$$
\begin{aligned}
& \underline{x}_{B}=\left(L_{1} \sin \theta_{1}+L_{L} \sin \theta_{L}\right) \leq+\left(L_{1} \cos \theta_{1}+L_{2} \cos \theta_{2}\right) \leq \\
& \delta x_{-b}=\frac{\partial \underline{x}_{B}}{\partial q_{i}} \delta q_{i}=\frac{\partial x_{3}}{\partial \theta_{1}} \delta \theta_{1}+\frac{\partial \underline{x}_{B}}{\partial \theta_{2}} \delta \theta_{2} \\
& =\left(L_{1} \cos \theta_{1} \delta \theta_{1}+L_{2} \cos \theta_{2} \delta \theta_{2}\right) i+\left(-L_{1} \sin \theta_{1} \delta \theta_{1}-L_{2} \sin \theta_{2} \delta \theta_{2}\right) j \\
& \delta N=\underset{\sim}{F} \cdot \delta x_{B}=\left(F_{i}\right) \cdot\left[\left(c_{1} \cos \theta_{1} \delta \theta_{1}+l_{2} \theta_{2} \theta_{2} \delta \theta_{2}\right)_{i}-\left(L, \sin \Delta \delta \theta_{1}+<_{2} \sin : \theta_{2} \delta \theta_{2} s_{-}\right]\right. \\
& =F L_{1} \cos \theta_{1} \delta \theta_{1}+F L_{2} \cos \theta_{2} \delta \theta_{2}=Q_{1} \delta \theta_{1}+Q_{2} \Gamma A_{2} \\
& Q_{1}=F L_{1} \operatorname{con} \theta_{1} \quad, Q_{2}=F L_{2} \operatorname{cn} \theta_{2}
\end{aligned}
$$

$$
\begin{aligned}
& g_{1}=\theta_{1} \\
& \Rightarrow m L_{1}^{2} \ddot{\theta}_{1}+\frac{1}{2} m L_{1} L_{2}\left[\ddot{\partial}_{2} \cos \left(\theta_{1} \cdot \theta_{L}\right)+\dot{\theta}_{2}^{2} \sin \left(\theta_{1}-\theta_{2}\right)\right]+m g L_{1} \sin \theta_{1}=F L_{1} \cos \theta_{1} \\
& q=\theta_{2} \\
& \frac{1}{2} m L_{1} L_{2}\left[\ddot{\theta}_{1} \cos \left(\theta_{1}-\theta_{2}\right)-\dot{\theta}_{1} \sin \left(\theta_{1}-\theta_{2}\right)\right]+\frac{1}{3} m L_{2}^{2} \ddot{\theta}_{2}+m g L_{2} \sin \theta_{L}=F L_{2} \cos _{2}
\end{aligned}
$$

<

隹

$$
v_{m}^{2}=\underline{v}_{m} \cdot \underline{v}_{m}=\dot{x}+l^{2} \dot{\theta}^{2}+2 l \dot{x} \dot{\theta} \operatorname{en} \theta
$$

$$
T=\frac{1}{2} m v_{m}^{2}=\frac{1}{2} m\left(\dot{x}^{2}+l^{2} \dot{\theta}^{2}+2 l \dot{x} \dot{\theta} \ln \theta\right)
$$

$$
V=m g l(1-\cos \theta)
$$

$$
\begin{aligned}
r_{m} & =r_{0}+r_{m / \sim}=x!_{1}+l \underline{e} \\
\delta \underline{r}_{m} & =\frac{\partial r_{m}}{\partial \theta} \delta \theta=0+l \frac{\partial e_{r}}{\partial \theta} \delta \theta \\
& =l e_{\theta} \delta \theta
\end{aligned}
$$

$$
\begin{aligned}
& \underline{V}_{m}=\underline{V}_{0}+\underline{V}_{m /}=\dot{\lambda} i+\operatorname{lo}(\operatorname{con} \theta \dot{i}+\sin \theta j) \\
& =(\dot{x}+\theta \dot{\theta} \cos \theta) \underline{i}+2 \dot{\theta} \sin \theta j \\
& \underline{v}_{m}=\dot{x} \underline{\prime}_{+}+\dot{\dot{g}}_{\theta}=\left(\dot{x} \operatorname{con} \theta \underline{e}_{\theta}+\dot{x} \sin \theta \underline{e}_{r}\right)+l \dot{\dot{g}} \underline{e}_{r} \\
& =\dot{x} \sin \theta \underline{e}_{r}+(2 \dot{\theta}+\dot{x} \operatorname{cn} \theta) \underline{e}_{r}
\end{aligned}
$$

$$
\begin{aligned}
\underline{F}_{c} & =-C V_{m}=-c\left[\dot{x} \sin \theta e_{r}+(\ell \dot{\theta}+\dot{x} \cos \theta) e_{\theta}\right] \\
\delta W & =F_{e} \cdot \delta r_{m}=-c\left[\dot{x} \sin \theta e_{r}+(l \dot{\theta}+\dot{x} \operatorname{cn} \theta) \underline{e}_{r}\right] \cdot 2 \operatorname{se} \underline{e}_{\theta} \\
& =-c(l \dot{\theta}+\dot{x} \ln \theta) R \delta \theta=C Q \operatorname{So} \\
Q & =-c\left(l^{2} \dot{\theta}+Q \dot{x} \cos \theta\right)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\theta}}\right)-\frac{\partial T}{\partial \theta}+\frac{\partial V}{\partial \theta}=Q \\
& \frac{\partial T}{\partial \dot{\theta}}=\frac{1}{2} m\left(2 \dot{x} l \cos \theta+2 l^{2} \dot{\theta}\right)=m \dot{x} l \cos \theta+m l^{2} \dot{\theta} \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\theta}}\right)=m \ddot{x} l \operatorname{con} \theta-m x l \dot{\partial} \sin \theta+m l^{2} \dot{\theta} \\
& \frac{\partial T}{\partial \theta}=\frac{1}{2} m(-2 \dot{x} l \dot{\theta} \sin \theta)=-m \dot{x} l \dot{\theta} \sin \theta \\
& \frac{\partial V}{\partial \theta}=m g l \sin \theta
\end{aligned}
$$

$$
m \bar{x} l \cos \theta-m l \dot{x} \dot{\partial} \sin \theta+m l^{2} \dot{\theta}_{-}-(-m l \dot{x} \partial \sin \theta)+m g l \sin \theta
$$

$$
=-c l^{2} \theta^{\prime}+c l \dot{n} \ln \theta
$$

: ノ ノ

$$
m l \ddot{\theta}+c l \dot{\theta}+m g \sin \theta=-(m \ddot{x}+c \dot{x}) \cos \theta
$$

Dissipation Function Eié cí范

$$
\begin{aligned}
& Q_{1}=-\sum_{j} c_{i} \dot{g}_{j} \\
& P=-\sum_{j} Q_{j} \dot{q}_{j}
\end{aligned}
$$

$$
\frac{\partial P}{\partial \dot{q}_{i}}=\sum_{j} \frac{\partial Q_{j}}{\partial \dot{q}_{i}} \dot{q}_{j}-\sum_{j} Q_{j} \cdot \frac{\partial \dot{q}_{j}}{\partial q_{i}}=\sum_{j}-e_{i j} \dot{g}_{j} \cdot-Q_{j} \cdot \delta_{i j}
$$

$$
=\sum_{i} C_{i} j \dot{q}_{j}-Q_{i}=-Q_{i}-Q_{i}=-2 Q_{i}
$$

$$
Q_{i}=-\frac{1}{2} \frac{\partial P}{\partial q_{i}}
$$

$$
F=\frac{1}{2} P \quad \text { Rayleigh's Dissipation Function }
$$

$$
\begin{aligned}
& \frac{d}{d f}\left(\frac{\partial T}{\partial q_{i}}\right)-\frac{\partial T}{\partial q_{i}}+\frac{\partial V}{\partial q_{i}}=Q_{i}+\left(-\frac{\partial F}{\partial \dot{q}_{i}}\right) \\
& \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{i}}\right)+\frac{\partial T}{\partial q_{i}}+\frac{\partial V}{\partial q_{i}}+\frac{\partial F}{\partial \dot{q}_{i}}=Q_{i}
\end{aligned}
$$

: と

位

$$
\begin{aligned}
F & =\frac{1}{2} c V_{m}^{2} \\
& =\frac{1}{2} c\left(\dot{x}^{2}+l^{2} \dot{\theta}^{2}+2 l \dot{x} \dot{\theta} \cos \theta\right)
\end{aligned}
$$

$:$

$$
\begin{aligned}
\frac{\partial F}{\partial \dot{\theta}} & =\frac{1}{2} c\left(2 l^{2} \dot{\theta}+2 \dot{x} Q \operatorname{cn} \theta\right) \\
& =c l^{2} \dot{\theta}+c e \dot{x} \operatorname{cn} \theta
\end{aligned}
$$

ジ多

$$
m l \dot{\theta}+c l \dot{\theta}+m g \sin \theta=-(m \dot{i}+\operatorname{cin}) \operatorname{cn} \theta
$$

كَ

$$
\begin{aligned}
& \underline{v}=\dot{x} i+j ; \quad v^{2}=\dot{x}^{2}+\dot{y}^{2} \\
& x=x\left(q_{1}, q_{2}\right) \quad \text { os, } \\
& y=y\left(q_{1}, q_{2}\right) \\
& \dot{x}=\frac{\partial \lambda}{\partial q_{r}} \dot{q}_{r}=\frac{\partial x}{\partial q_{1}} \dot{q}_{1}+\frac{\partial \lambda}{\partial q_{2}} \dot{q}_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\dot{y}=\frac{\partial y}{\partial q_{r}} \dot{q}_{1} & =\frac{\partial y}{\partial q_{1}} \dot{q}_{1}+\frac{\partial y}{\partial q_{2}} \dot{q}_{2} \\
: T & =\frac{1}{2} m v^{2} \quad \text { 说 }
\end{aligned} \\
& T=a_{11} \dot{q}_{1}^{2}+a_{12} \dot{q}_{1} q_{2}+a_{22} \dot{q}^{2} \\
& a_{11}=\frac{1}{2} m\left[\left(\frac{\partial x}{\partial q_{1}}\right)^{2}+\left(\frac{\partial y}{\partial q_{1}}\right)^{2}\right]=a_{n}\left(q, q_{2}\right) \\
& a_{22}=\frac{1}{2} m\left[\left(\frac{\partial x}{\partial q_{2}}\right)^{2}+\left(\frac{\partial y}{\partial q_{2}}\right)^{2}\right]=a_{21}\left(q_{1}, q_{2}\right) \\
& a_{12}=m\left[\frac{\partial x}{\partial q_{1}}-\frac{\partial x}{\partial q_{2}}+\frac{\partial y}{\partial q_{1}} \frac{\partial y}{\partial q_{2}}\right]=a_{12}\left(q_{1}, q_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { : } 0_{1, \prime} \text { is }
\end{aligned}
$$

هקزإِرَ

$$
\begin{aligned}
& T=\frac{1}{2} \sum m_{i} v_{i}{ }^{2}=\frac{1}{2} \sum m_{i}\left(\frac{\partial x_{i}}{\partial q_{r}} \dot{q}_{r}\right)\left(\frac{\partial x_{i}}{\partial q_{s}} \dot{q}_{2}\right) \quad r, s=1, \ldots, n
\end{aligned}
$$

$$
\begin{aligned}
& T=\frac{1}{2} a_{r s} \dot{q}_{r} \dot{q}_{s}
\end{aligned}
$$

$$
a_{r_{s}}=\sum_{i} m_{i} \frac{\partial x_{i}}{\partial q_{r}} \frac{\partial x_{i}}{\partial q_{s}}
$$

$a_{r s}=a_{s r}=m$ (
: النَّ

$$
T=\frac{1}{2} \underline{g}^{\top}=\underline{q}
$$

山شَ

1, (

קוֹ
二泪

$$
\begin{aligned}
V & =\frac{1}{2}\left[v_{11} g_{1}^{2}+2 v_{212} q_{1} q_{2}+V_{22} q_{2}^{2}\right] \\
& =\frac{1}{2}\left[k_{11} q_{1}^{2}+2 k_{12} q_{1} q_{2}+k_{22} q_{2}^{2}\right] \\
& =\frac{1}{2} k_{i j} q_{i} q_{j}
\end{aligned}
$$

$$
\dot{c}^{\prime}{ }^{i}
$$

$$
k_{i j}=\frac{1}{2} \frac{\partial^{2} v}{\partial q_{i} \partial q_{j}}
$$

$$
V=\frac{1}{2} q^{\top} k q
$$

: ن́

$$
\begin{aligned}
& V=V\left(q, q_{2}\right) \\
& \text { : } \underset{\sim}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& V=V(0, \cdot)+\frac{\partial V(0, \cdot)}{\partial q_{1}} q_{1}+\frac{\partial V(\eta 0)}{\partial q_{2}} q_{2}+\frac{1}{2}\left[\frac{\partial^{2} v}{\partial q_{1}^{2}} q_{1}^{2}+2 \frac{\partial^{2} v}{\partial q_{1} \partial q_{2}} q_{1} q_{2}+\frac{\partial^{2} V}{\partial q_{2}^{2}} q_{2}^{2}\right] \\
& + \text { H.O.T }
\end{aligned}
$$

