

$$
\lambda=\lambda_{1}=\frac{3}{2} \frac{k_{2}}{m} \Rightarrow\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

, رл
هن

看

$$
\underline{s}_{1}=\left\{\begin{array}{l}
1 \\
-
\end{array}\right\}, \underline{t}_{2}=\left\{\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right\}
$$

-

$$
\alpha_{1}{\underset{2}{1}}_{1}+\alpha_{2}{\underset{\sim}{2}}_{2}=0
$$

$$
\left\{\alpha_{1}+\alpha_{2}=0\left\{\alpha_{1}=0\right.\right.
$$

$$
\alpha_{1}\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}+\alpha_{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}\left\{\begin{array} { l }
{ \alpha _ { 1 } + \alpha _ { 2 } = 0 } \\
{ \alpha _ { 2 } = 0 }
\end{array} \Rightarrow \left\{\begin{array}{l}
\alpha_{1}=0 \\
\alpha_{2}=0
\end{array},\right.\right.
$$

-

 -

 -

除
：لیN

$$
\begin{aligned}
& \underline{\phi}_{1}^{\top} \underline{m} \underline{q}_{2}=\left[\begin{array}{ll}
1 & 2
\end{array}\right]\left(\begin{array}{cc}
m & m \\
0 & m
\end{array}\right)\left\{\begin{array}{l}
\phi_{1} \\
\phi_{1}
\end{array}\right\}=- \\
& {\left[\begin{array}{ll}
m & 2 m
\end{array}\right]\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right\}=m\left(\phi_{1}+2 \phi_{2}\right)=\text { 。 }} \\
& \Rightarrow \quad t_{2}=-\frac{1}{2} \phi_{1} \\
& \left.\left.\Rightarrow \Phi_{1}=\left\{\begin{array}{l}
\phi_{1} \\
\phi_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\phi_{1} \\
-\frac{1}{2} \phi_{1}
\end{array}\right\}=\phi_{1}\left\{\begin{array}{c}
1 \\
-1 / 2
\end{array}\right\} \Rightarrow \phi_{2}=\left\{\begin{array}{c}
1 \\
-\frac{1}{2}
\end{array}\right\} c \right\rvert\, \begin{array}{c}
2 \\
-1 \\
-1
\end{array}\right\}
\end{aligned}
$$

رі

元 －

位 ＂

$$
\therefore \text { (j) }
$$

$$
\underline{4}^{\prime} ;=4 ;
$$

$$
\phi_{j+1}^{\prime}=q_{j+1}+\alpha_{11} \phi_{j}^{\prime}
$$

$$
\underline{q}_{j+2}^{\prime}=\underline{q}_{j+2}+\alpha_{21} \underline{q}_{j}^{\prime}+\alpha_{22} \alpha_{j+1}^{\prime} \quad \sin ^{\prime}=0
$$

:

$$
\Rightarrow \quad \alpha_{11}=-\frac{\phi_{j}^{\prime} i_{m}^{T} \underline{q}_{j+1}}{\underline{\phi}_{j}^{\prime \top} \underline{m} \psi_{j}^{\prime}}
$$

$$
\begin{aligned}
& =\phi^{\prime} m_{j} \psi_{j+2}+\alpha_{21} \phi_{j}^{\prime} m \psi_{j}^{\prime} j+\alpha_{22} \psi_{j}^{\prime}=m_{j}^{\prime} /=0 \\
& \Rightarrow \alpha_{21}=-\frac{\phi_{j}^{\prime \top} \underset{=}{m q_{i+2}}}{\underline{q}_{j}^{\prime \top} m \phi_{i j}^{\prime}} \\
& \underline{q}_{j+1}^{\prime} \underline{m}_{=}^{r} \underline{q}_{j+2}^{\prime}=\phi_{j+1}^{\prime} \underline{m}_{=}^{\prime}{\underset{-}{j+2}}+\alpha_{22} \underline{\phi}_{j+1}^{\prime} m=\dot{\phi}_{j}^{\prime}=0
\end{aligned}
$$

$$
\alpha_{22}=-\frac{\phi_{j+1}^{\prime \top} m \phi_{j+2}}{\phi_{j+1}^{\prime r}=\Phi_{j}^{j}}
$$

位

:riャr

$$
\left(\begin{array}{lll}
1 & 0 & - \\
0 & 2 & 0 \\
\cdot & 0 & 1
\end{array}\right)\left\{\begin{array}{l}
\bar{x}_{1} \\
\bar{x}_{2} \\
\vec{x}_{3}
\end{array}\right\}+\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{array}\right)\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0
\end{array}\right\}
$$

$$
:-1,1, p, j \operatorname{det}(k-1 m)=0 \quad \rho_{L}
$$

$$
8 \lambda^{3}-2 \lambda^{2}=0 \quad \Rightarrow-2(\lambda-4) \lambda^{2}=0
$$

$$
\begin{aligned}
& \lambda_{1}=\cdot \Rightarrow \omega_{1}=0 \\
& \lambda_{2}=0 \Rightarrow \omega_{2}=\cdot \\
& \lambda_{3}=4 \Rightarrow \omega_{3}=2
\end{aligned}
$$

:

$$
\lambda_{3}=4 \quad \Rightarrow(k-\lambda m) \underline{\underline{k}}=.
$$

- تَ تَ

$$
\lambda_{1}=\cdot
$$

:سתلرارل

$$
x_{1}-2 x_{2}+x_{3}=0
$$

 .

$$
\begin{aligned}
& {\left[\left(\begin{array}{ccc}
1 & -2 & 1 \\
-2 & 4 & -2 \\
1 & -2 & 1
\end{array}\right)-4\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\right]\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}} \\
& \left(\begin{array}{ccc}
-3 & -2 & 1 \\
-2 & -4 & -2 \\
1 & -2 & -3
\end{array}\right)\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left\{\begin{array}{l}
0 \\
\vdots
\end{array}\right) \Rightarrow\left\{\begin{array}{l}
-2 x_{1}-2 x_{2}+x_{3}=0 \\
\frac{-2 x_{1}-4 x_{2}-2 x_{3}=0}{-8 x_{1}-8 x_{2}=0}
\end{array}\right. \\
& \Rightarrow x_{2}=-x_{1} \leftarrow \\
& \text { [N N/w; } \Rightarrow x_{1}-2 x_{2}-3 x_{3}=0 \Rightarrow x_{1}-2\left(-x_{1}\right)-3 x_{3}=\cdot \\
& \Rightarrow x_{3}=x_{1} \rightleftarrows \\
& x_{3}=\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\}=\left\{\begin{array}{c}
x_{1} \\
-x_{1} \\
x_{1}
\end{array}\right\}=x_{1}\left\{\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right\} \Rightarrow x_{3}=\left\{\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{x}_{3}{ }^{m}{ }_{=} \underline{x}_{3}=4 \quad \Rightarrow{\underset{t}{3}}=\frac{x_{3}}{\sqrt{4}}=\left\{\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}-2(0)+(1)=0 \Rightarrow x_{1}=-1 \\
& x_{1}=\left\{\begin{array}{c}
-1 \\
i
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{x}_{1}^{\top} \underline{m}_{\underline{x_{1}}}=2 \rightarrow \underline{{\underset{p}{1}}}=\frac{x_{1}}{\sqrt{2}}=\left\{\begin{array}{c}
-1 / \sqrt{2} \\
\vdots \\
1 / \sqrt{2}
\end{array}\right\}
\end{aligned}
$$

少

$$
\begin{aligned}
& x_{2}=1, x_{3}=0 \\
& x_{1}-2(1)+0=0 \quad \Rightarrow x_{1}=2 \\
& \underline{x}_{2}=\left\{\begin{array}{l}
2 \\
1 \\
0
\end{array}\right\} \\
& \text {. ※ं } \\
& \underline{x}_{2}^{\top} \underline{m}_{\underline{x}_{1}}=-\sqrt{2} \neq 0 \\
& \underline{x}_{2}^{\top} \underline{m}_{-3}{\underset{-}{3}}=0
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\phi}_{2}=\underline{x}_{2}+\alpha \underline{\phi}_{1} \\
& \Rightarrow \underline{q}_{2}^{\top} \underline{m}_{\underline{q_{1}}}=\underline{x}_{2}^{\top} \underline{m} \underline{q}_{1}+\alpha \underline{q}_{1}^{\top} \underline{m}_{1} \underline{q}_{1}=0 \Rightarrow \alpha=-\frac{1}{m_{1}} \underline{x}_{2}^{\top} m \underline{q}_{n} \\
& m_{1}=\Phi_{1}^{\top} m_{\underline{\Phi_{1}}}=1
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{1}=-\frac{1}{1}\left[\begin{array}{lll}
2 & 1 & 0
\end{array}\right]\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)\left\{\begin{array}{c}
-y \sqrt{2} \\
0 \\
y_{\sqrt{2}}
\end{array}\right\}=\sqrt{2} \\
& \Rightarrow{\underset{2}{2}}=\left\{\begin{array}{l}
2 \\
1 \\
0
\end{array}\right\}+\sqrt{2}\left\{\begin{array}{c}
-1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& t_{2}^{r} m_{2} d_{2}=4 \\
& \Rightarrow \dot{q}_{2}=\frac{\phi_{2}}{\sqrt{4}}=\left\{\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\phi}=\left(\begin{array}{ccc}
-1 / \sqrt{2} & 1 / 2 & 1 / 2 \\
0 & 1 / 2 & -1 / 2 \\
1 / \sqrt{2} & 1 / 2 & 1 / 2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi_{=}^{\top} k \neq=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 4
\end{array}\right)
\end{aligned}
$$

