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Solution of Nonconservative Eigenvalue Problem as Applied to a 2 dof System with
Masses, Dampers, and Springs

A 2 dof mass-damper-spring mechanical gystem with two masses, dampers, and springs is shown
in Figure 1. The generalized coordinates are ¢ and ¢ measured from the equilibrium position, as
shown in the figure. The external forces, Q1 and )2 are as shown.
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Figure 1: A 2 dof mass-damper-spring system for nonconservative eigenvalue problem. The pa-
rameters are: my = lkg, mg = 2kg, c1 = 24N - 8/m, ¢a = 20N - s/m, k1 = 3600 N/m, and
ko = 1600 N/m.

The equations of motion of the 2 dof system can be derived and arranged in the standard matrix
form as that in equation (1) to yield
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where q = [g1 ¢2)7 and Q = [@1 Q2)7. Note that the mass matrix M, damping matrix C, and
stiffness matrix K are symmetric and positive definite. Substituting the following parameters into

equation (23} my = lkg, mg = 2kg, c1 = 24N - s/m, ¢co = 20N - s/m, ki = 3600 N/m, and
kg = 1600 N/m, we have
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ol K= 5200 —1600 (24)

10 44 —20
M_{ } C_{ —1600 1600

0 2 —20 20

Equation (23) can be re-arranged in the form of linear system equation as that in equation (2} with
x(t) = [q(t) a(B)]T = [q1(t) g2(8) d1(t) 42(t)]T. The A matrix from equation (3) becomes
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5200 1600 —44 20
800 —800 10 —10

The eigenvalues of A and the corresponding left and right eigenvectors are:

AL =—24.29469.70:, A= -—2420—-69.70:, A;=-—27094+2283, N;=—2.700—22.83; (26)

—0.00437508 — 0.01255644¢ —0.00437508 4+ 0.0125564¢ —0.000304738 — 0.01422544¢ —0.000304738 + 0.01422544
x = 0.000170842 4+ 0.00288320¢ 0.000170842 — 0.00288320¢ —0.00483786 — 0.0407712 ¢ —0.0048376& + 0.04077121¢ (27)
0.981479 0.931479 0.323614 + 0.0315707 ¢ 0.325614 — 0.0313 7971
—0.134108 — 0.08086361 —0.184158 4 0.0808636 ¢ 0.942076 0.943076
0.60897 + 37,8769 ¢ 0.69897 — 37.8769 ¢ —1.83893 4 2.183388 ¢ —1.83893 — 2.18338 1
v = 0.13013 — 12.0948¢ 0.13013 + 12.8048¢ 0.723384 4 11.5237¢ 0.725384 — 11.5237¢ (28)
0.4815312 + 0.140873¢ 0.481512 — 0.140873¢ (0.0858810 4 0.0178v214¢ 0.0838810 — 0.01767214
—0.183201 — 0.106162¢ —0.165201 4 0.106162¢ 0.503139 + 0.0336883¢ 0.503139 — 0.0536663¢

Equations (4} and (5) can be verified with X and Y in equations (27) and (28}.




Response of x(¢) to initial conditions: Consider system with no excitation, i.e.,, @ = 0. The
initial conditions of this system are given as follows:

From equation (11}, the response of the system in equation (2} to initial conditions is
x(t) = ®(4) x(0) = X A YT x(0) (30)

where X is given in equation (27} and Y in equation (28}, and

£(—24.2909469.7001 1} ¢ 0 0 0
0 o(—24.2009-69.7001 ) ¢ 0 0
A
= 0 0 £ (—2.70005+22.8316 1) ¢ 0 (31)
0 0 0 o (—270905-22.83164) ¢

Substituting equations (27), (28), (31), and (29) intc equation (30), we obtain

(0.468788 + 0.173178 §) o(—34.2909-69.70013) ¢ | 10 4ggvay — 0. 178178 ¢) o(—24.2909+69.70014) ¢
(—0.0060533 — 0.00820835 ¢) {—24.2909=89.70015) ¢ 4 (5 05sax3a 4+ 000820638 §) e(—242900489.70013) ¢ 4
(0.68308 — 36.881 1) {—24.2908-60.70014) ¢ 4 (1 55308 + 36,881 4) e{—24:2009460. 7001 ¢) ¢
(17831 4 6.057 1) o(—242900—60.70014) ¢ | | reay g gsyq) o{—242008469.7001 8

x(t) = 90
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(0.0060533 — 0.06680434) o(—270905—22.83164) ¢ 4 (1 noaEapas 4 00668043 ¢) o(—2 TO905+22.83184) ¢
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{—1.v831 — 2.0331914) o{—2.70906-22.88164)¢ | (| rga1 4 2.033104) £{—270006422.88164) ¢

After simplification, we obtain

£0.0624302 cos(22.8316 ) — 00524289 sin(22.8316 )
0.193907 cos(22.8316¢) — 0.133189 sin(22.8316 1)
—1.36616 cos(22.8316 ¢) — 1.28335 sin(22.8316 t)
—3.56621 cos(22.8316 ¢) — 4.06637 sin(22.8316 1)
© 0.93757 cos(69.7001 ¢) + 0.34635 sin(69.7001 £)
_g19009¢ | —0.193907 cos(69.7001 ¢) — 0.0164127 sin(69.7001 ¢)
e 1.36616 cos(69.7001 ¢) — 73.7619 sin(69.7001 t)
3.56621 cos(69.7001 ¢) + 13.914 sin(69.7001 ¢)

x(t) = goe270905¢

(32)

The results of x(¢) in equation (32) represent the sum of two exponentially decaying curves for
x(t) = [q1(2) g2() ¢1(t) go(£)]". The results can be plotted and are shown in Figures 2 and 3 for the
displacements and velocities, regpectively. It can be seen that ¢; and ¢; settles down more quickly
than ¢o and g2.

Comparison with the Undamped System: If the damping matrix is set to zero, the congervative
system will have the following solution of eigenvalue problem.

1 0 5200 —1600
M= {0 2] ’ E= {—1600 1600 } g
where the units for mass is kg and for stiffness N - s/m. The dynamical matrix is
A S
D= {36100 1%@0} (34)
3600 7200

5



g ; ; ; ; ; ; ;
4] 0.1 0.2 0.3 0.4 0.6 0.8 0.7 0.8
time (seconds)

0.15 T T
0.1

0.05

o

-0.05

-0.1

-0.15

-0.2
0

time (seconds)

Figure 2: The displacements of g; and ¢ for the 2 dof system.
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Figure 3: The velocities of ¢1 and g2 for the 2 dof system.



The eigenvalues of the dynamical matrix D are
A1 = 0.00190065, A2 = 0.000182686 (35)

with corresponding eigenvectors of

_ [—0.323877 [ —0.985666 2
U= _0.946000 Y21 0168711 (36)

The natural frequencies are
wy = 22.9377 rad/ sec, wq = 73.9856 rad/sec (37

Comparing with the response in equation (32), we find that the damped frequencies of vibration
are 22.8316 rad/sec and 69.7001 rad/sec which are smaller than the natural frequencies in equation
(37}, as expected for the damped system.



