Shahid Chamran university of ahvaz Electromagnetism ٩٨ بهمن

Homework1

1- Prove the law of cosines for a triangle.

$$C = \sqrt{A^2 + B^2 - 2AB\cos\alpha}.$$

- 2- Given three vectors **A**, **B**, and **C**, obtain the expressions of (a) **A.B**,(b) **A** × **B**, and (c) **C** \cdot (**A** × **B**) in the orthogonal curvilinear coordinate system (u₁, u₂, u₃). **A**=A₁u₁+A₂u₂+A₃u₃ , **B**=B₁u₁+B₂u₂+B₃u₃ ,
- 3- (a) Write the expression of the vector going from point P1=(1, 2, -1) to point P2=(3, -2, -4) in Cartesian coordinates. (b) What is the length of this line?
- 4- Express the vector $\mathbf{A} = \mathbf{a_r} (2 \cos \varphi) a_{\varphi} 2r + \mathbf{a_z} 2$ in Cartesian coordinates.
- 5- The position of a point P in spherical coordinates is (8, 120°, 330°). Specify its location (determine the vector: OP) (a) in Cartesian coordinates, and (b) in cylindrical coordinates.
- 6- Determine the values of the following products of base vectors:
- a) $a_x \cdot a_{\varphi}$ b) $a_{\theta} \cdot a_y$ c) $a_r \times a_x$
- d) $a_R \cdot ar$ e) $a_V \cdot a_R$ f) $a_R \cdot az$
- g) $a_R \times az$ h) $a_{\theta \bullet}az$ i) $az \times a_{\theta}$
- 7- Find the component of the vector $\mathbf{A} = -\mathbf{a}_y \ z + \mathbf{a}_z \ y$ at the point P_1 (0, -2, 3), which is directed toward the point $P_2(\sqrt{3} 60^\circ, 1)$.

(در واقع تصویر بردار A روی بردار P_1 و استه شده و مشخص است که نقطه اول دکارتی و دومی استوانه ای داده شده است.)